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1. Introduction

Magnetic particle imaging (MPI) is an emerging tomographic medical imaging platform which employs static and 
dynamic magnetic fields. In MPI, the excitation response of magnetic nanoparticles (MNPs) is recorded, allowing 
for spatial encoding of MNP distribution using gradient fields (Gleich and Weizenecker 2005, Weizenecker et al 
2009, Krishnan 2010). In principle, magnetic nanoparticle tracers in aqueous solution would be administered 
intravenously and allowed to circulate throughout the body, enabling high-resolution cardiovascular imaging 
with high sensitivity. Recently, there has been exploration into the possibility of multi-contrast (also referred to 
as ‘multi-color’ or ‘colored’) MPI, in which the signal from different tracers or tracer environments is separated 
(Rahmer et al 2015). In standard frequency-space MPI, the image is reconstructed from the induced voltage signal 
using a single system function, which is the kernel to the integral imaging equation (Rahmer et al 2009). With 
multi-contrast MPI, multiple system functions are used for image reconstruction, resulting in multi-channel 
images. A detailed theoretical description of multi-contrast frequency-space MPI can be found in Möddel et al 
(2018).

Tracer properties and properties of the local particle environment that influence the tracer relaxation behav-
ior include temperature, viscosity, mobility state, material, and core/hydrodynamic size. Several of these have 
recently been investigated using magnetic particle spectroscopy (MPS) and 1D and 2D MPI (Rauwerdink and 
Weaver 2009, 2010, Rauwerdink et al 2010, Wawrzik et al 2013, Hensley et al 2015, Rahmer et al 2015, Utkur et al 
2017), most notably quantitative viscosity imaging in Möddel et al (2018), qualitative temperature mapping in 
Stehning et al (2016) and quantitative temperature mapping in Zhong et al (2018) and Wells et al (2018). In this 
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Abstract
Magnetic particle imaging (MPI) is an imaging modality that detects the response of a distribution 
of magnetic nanoparticle tracers to alternating magnetic fields. There has recently been exploration 
into multi-contrast MPI, in which the signal from different tracer materials or environments is 
separately reconstructed, resulting in multi-channel images that could enable temperature or viscosity 
quantification. In this work, we apply a multi-contrast reconstruction technique to discriminate between 
nanoparticle tracers of different core sizes. Three nanoparticle types with core diameters of 21.9 nm, 
25.3 nm and 27.7 nm were each imaged at 21 different locations within the scanner field of view. Multi-
channel images were reconstructed for each sample and location, with each channel corresponding to 
one of the three core sizes. For each image, signal weight vectors were calculated, which were then used 
to classify each image by core size. With a block averaging length of 10 000, the median signal-to-noise 
ratio was 40 or higher for all three sample types, and a correct prediction rate of 96.7% was achieved, 
indicating that core size can effectively be predicted using signal weight vector classification with close to 
100% accuracy while retaining high MPI image quality. The discrimination of the core size was reliable 
even when multiple samples of different core sizes were placed in the measuring field.
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work, we investigate the potential for multi-contrast MPI using MNP core size differentiation. Past demonstra-
tions of multi-contrast MPI based on tracer, rather than environment, discrimination involved nanoparticle 
tracers that did not display optimized MPI performance, primarily due to high polydispersity and non-optimal 
sizes. With highly tailored single-core MNPs specifically designed for optimal MPI performance, as defined by 
image resolution and signal intensity, MNP cores of different sizes could be separately functionalized for spe-
cific purposes, e.g. long-term circulation (Khandhar et al 2017), cancer targeting (Arami et al 2017), or coat-
ing of devices for cardiovascular interventions (Panagiotopoulos et al 2015, Salamon et al 2016), allowing for 
reconstruction of high resolution images with high sensitivity on each channel. While the focus of this work 
is MPI, it should be mentioned that multicolor image reconstruction has been studied for other nanoparticle-
based imaging methods as well. For example, fluorescence-based multicolor bioimaging using biosynthesized 
zinc nanoparticles was shown in Kang et al (2017), and multicolor imaging using magnetorelaxometry with 
200 nm–500 nm nanoparticles was demonstrated in Coene et al (2017).

Due to its biocompatibility, iron oxide is the typical material used for MNP tracers, particularly the magnetite 
phase, which has the highest saturation magnetization (446 kA m−1). The optimal size range for MPI perfor-
mance of phase-pure magnetite tracers has been experimentally determined to be 23 nm–28 nm in core diameter 
(Ferguson et al 2013, 2015). Below diameters of about 23 nm, particles require a higher applied field strength to 
saturate, resulting in lower recorded signal. Above approximately 28 nm, the phase lag between the drive-field 
and particle response becomes large and the particle magnetization can no longer follow the field, resulting in 
decreased image resolution. Due to this size restriction, a size-based differentiation approach requires highly 
monodisperse particles with carefully controlled size, as well as a highly sensitive signal separation technique.

For particles in this size range (23 nm–28 nm core diameter) under an applied AC field, a combination of Néel 
relaxation (flipping of the magnetic moment within the particle) and Brownian relaxation (rotation of the entire 
particle to align with the field) may occur, depending on the particle hydrodynamic size (Deissler et al 2014, Shah 
et al 2015). In this work, we adapt the experimental part of Möddel et al (2018) to demonstrate particle size dis-
crimination and combine it with sample localization in 2D MPI using highly monodisperse optimized MNPs.

2. Experimental setup

At the core of our discrimination experiment we have three particle types with different core sizes. In the following 
we provide a detailed description of the particle synthesis and outline the magnetic particle spectroscopy and 
imaging experiments.

2.1. Particle synthesis
Magnetite nanoparticles were synthesized according to a thermal decomposition process using an iron oleate 
precursor, as described in detail in Kemp et al (2016). The iron oleate was produced by dissolving a solution of 
iron (III) chloride and sodium oleate in hexanes, ethanol, and deionized water and heated under argon for four 
hours at reflux. The resultant product was extracted in a separating funnel and the aqueous layer was removed. 
The organic layer was washed with deionized water and dried with sodium sulfate. The remaining solvent was 
removed by rotary evaporation. The iron oleate was dissolved in 1-octadecene and oleic acid and heated under 
argon to 324 °C until nucleation. The temperature was then lowered to 318 °C and mixture exposed to a 1% 
oxygen/99% argon atmosphere until particles had grown to desired size.

Three particle types, S, M, and L, were fabricated, with core diameters of 21.9 nm, 25.3 nm and 27.7 nm and 
respective distribution parameters of 0.04, 0.08 and 0.07. Particle diameters were assumed to follow a log-nor-
mal distribution. Size, size distribution, and crystallographic phase were determined with transmission electron 
microscopy (TEM), by preparing samples on 200-mesh carbon coated copper grids from a 1 mg ml−1 nanopar-
ticle solution in chloroform. Particle sizes and distributions were determined from TEM images using ImageJ 
open source software.

The nanoparticle cores were made dispersible in aqueous medium by coating with an amphiphilic  
co-poly mer comprised of polyethylene glycol and poly(maleic anhydride- alt-1-octadecene). Hydrodynamic 
sizes of dispersions in deionized water were determined by dynamic light scattering (DLS) resulting in sizes of 
94.3 nm, 77.1 nm and 95.9 nm, with respective distribution parameters of 0.13, 0.18 and 0.15. Particles were then 
nor malized to a concentration of 0.9gFe l−1, confirmed by inductively coupled plasma—optical emission spec-
trometry (ICP-OES).

2.2. Magnetic particle spectroscopy
MPS measurements were taken using a custom-built spectrometer (Ferguson et al 2012) with a drive frequency of 
26 kHz and a drive-field amplitude of 20 mT µ−1

0 , where µ0 is the vacuum permeability. The tracer magnetization 
response, dm/dt, is recorded as the induced voltage in the receive coil caused by a sinusoidal excitation field H.
The receive circuit has an upper frequency of 1.04 MHz, allowing detection of up to 40 harmonics after Fourier 
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transform. Measurements of 150 µl aqueous solutions of particle types, S, M, and L were performed in triplicate, 
and were then averaged.

2.3. Magnetic particle imaging
Multi-contrast MPI is performed using a preclinical MPI scanner (Philips preclinical MPI package with a Bruker 
preclinical MPI system) (Bruker Biospin MRI GmbH Ettlingen, Germany 2015). All samples are moved within 
the scanner using a three axis robot (isel automation GmbH) positioned in the back of the scanner shown in 
figure 1(a). The view into the scanner bore with a mounted sample on the robot rod is shown in figure 1(b). For 
imaging, a 2D FoV of 20 mm × 20 mm in the xy-plane is used, which lies horizontally within the scanner gantry. 
Particle excitation is done using drive-fields with frequencies of 2.5/102 MHz and 2.5/96 MHz and amplitudes 
of 12 mT µ−1

0  in the x- and y -direction. With these parameters, a single scan of the 2D FoV takes 652.8 µs. Spatial 
encoding uses a gradient field of 1.2 µ−1

0  m−1, 1.2 µ−1
0  m−1 and 2.4µ−1

0  m−1 in the x-, y -, and z-direction. During 
excitation, the particles’ magnetization signal is recorded by three orthogonal pick up coils aligned along the 
x-, y - and z-direction. The three signals are filtered and digitized with a bandwidth of 1.25 MHz. The final 
measurement vector contains the Fourier transformed time signals from each location.

A cuboid-shaped 1 mm × 1 mm × 2 mm sample was prepared from each of the particle solutions. These sam-
ples are labeled S, M, and L corresponding to the particle sample they contain. In total three system matrix, three 
regular MPI measurements with a single sample, and four regular MPI measurements with multiple samples in 
the FoV were performed.

The three system matrix measurements were performed on a 24 mm × 24 mm field of view with a voxel size 
of 1 mm × 1 mm by averaging 10 000 measurements at each grid position for each sample. The data from each 
measurement was processed into a system matrix. Henceforth, we refer to the system matrices to as SS, SM, and SL 
corresponding to the samples S, M, and L respectively. In a series of three independent experiments each sample 
was attached to the arm of a three axis robot and moved to the center position of the scanner and 20 additional 
uniform random positions within the FoV. At each position 10 000 measurements were taken. The random posi-
tions were the same for each of the three experiments and are listed in table 1 and shown in figure 2.

In the final experiment different combinations of all three samples were scanned simultaneously. To this 
end, a sample holder containing the samples was mounted to the robot and moved to the center of the FoV. The 
arrangement is shown in figures 1(c) and (d). In four independent scans first all three samples and afterwards all 
three combinations of two samples were measured. Each measurement contains 10 000 frames.

3. Multi-contrast MPI core size discrimination

The particles’ core sizes within a sample are discriminated in a three-step procedure. These steps are adapted 
from our earlier work on viscosity quantification (Möddel et al 2018). The first step, multi-channel image 
reconstruction, is modified only slightly and will be briefly summarized in the following subsection. Second and 
third, image processing and core size discrimination are outlined thereafter in a separate subsection. Additionally, 
we estimate image SNR and sample size as described in the last subsection.

Figure 1. In (a) and (b) the three axis robot and the rod used to move the sample within the scanner bore are shown in back and 
front view, respectively. (c) shows the sample holder used for the multi-sample experiments with all three samples mounted on the 
holder. Each sample as well as the sample holder can be mounted on the rod for a precise positioning within the scanner bore (d).

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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3.1. Multi-channel image reconstruction
Prior to reconstruction, measurements and system matrices are frequency filtered, i.e. only frequencies above 
80 kHz and with a signal to noise ratio above 3.5 are used for reconstruction. To analyze the influence of noise 
on the size discrimination the measurements obtained at each position were block averaged with a block length 
Mavg  of 10 000, 1000 and 100 yielding 1, 10 and 100 final multi-channel images per sample and position.

Using the system matrices SS, SM, and SL a multi-channel image reconstruction was performed by solving the 
Tikhonov regularized optimization problem

cS, cM, cL = argmin
c̃S ,̃cM,̃cL∈RN

+

∥∥∥∥∥∥

(
SS SM SL

)



c̃S

c̃M

c̃L



− û

∥∥∥∥∥∥

2

2

+ λ̃

∥∥∥∥∥∥




c̃S

c̃M

c̃L





∥∥∥∥∥∥

2

2

 (1)

for each measurement vector û (Rahmer et al 2015). Here, N = 24 × 24 is the total number of voxels within 
each channel and λ̃ is the Tikhonov regularization parameter. The latter is usually not directly reported, but 

λ̃ = λN/‖
(

SS SM SL
)
‖F, where ‖ · ‖F  denotes the Frobenius-norm. The channels cS, cM, and cL are 

obtained by iteratively solving equation (1) using 10 000 iterations of the Kaczmarz solver. The regularization 
parameter λ for the single sample measurements was chosen to be 0.01, 0.05 and 0.1 for Mavg  of 10 000, 1000 
and 100, respectively. In case of the multi-sample measurements the averaging was set to Mavg = 10 000 and the 
regularization parameter λ was set to 10−4.

3.2. Core size discrimination
As shown in figure 3 each reconstructed image contains the channels cS, cM and cL. The signal generated by the 
samples within the different channels is collected by summation over a circular region of interest (ROI) for each 
channel individually, shown in figure 4. The ROI is centered at the corresponding sample position and has a 
radius of 4 voxels clipped against the edges of the reconstructed images. The resulting summation yields a weights 
vector w = (σS,σM,σL) ∈ R3

+ containing the summed signal for the channels cS, cM, and cL, respectively.
Reconstruction parameters are different for each block averaging length. Therefore, we split our data with 

respect to the block averaging length into three independent sets. Note that the core size discrimination algo-
rithm described here will be applied to each set individually. Weight vectors ws,p ,i are calculated for all samples 
s ∈ {S, M, L}, positions p ∈ {0, 1, . . . , 20} and each image i. Taking the weight vectors ws,p ,i as observations, the 
task of core size discrimination can be formulated as a classification problem, where we have to identify a suitable 
core size label, i.e. S, M, or L, for each observation. Here, we use the nearest centroid classification algorithm for 
this task. This algorithm is split into two parts: a learning phase and a classification phase. In the learning phase 
we use the weight vectors ws,p =0,i and class labels s as training data to calculate the three centroids

µs =
1
N

N∑

i=1

ws,p=0,i, (2)

where N is the total number of reconstructed images at position 0. In the classification phase a class label C is 
assigned to each of the remaining observations ws,p ,i, p != 0, by finding the nearest centroid

C = argmin
s∈{S,M,L}

‖µs − ws,p,i‖2. (3)

3.3. Signal to noise ratio and sample size estimation
To assess the image quality we calculate the signal to noise ratio (SNR) of our multi-channel images for each 
block averaging length. To begin with a maximum intensity projection along the channels cS, cM and cL will be 
performed for each multi-channel image. Following the notation from the last section the resulting 2D images 
will be referred to as cs,p,i . The image signal as,p ,i is given by the respective maximal voxel value found in the 
circular region of interest (ROI) around the corresponding sample position. The image noise ns,p  is quantified 

Table 1. A table with all sample positions.

Position 0 1 2 3 4 5 6 7 8 9 10

x (mm) 0.00 −3.87 −5.54 0.84 3.03 7.32 8.34 0.71 −6.33 1.58 2.45

y  (mm) 0.00 −8.32 −3.12 −5.46 1.19 8.68 −7.49 −3.37 0.93 −7.35 −2.62

Position 11 12 13 14 15 16 17 18 19 20

x (mm) −7.23 5.57 −1.54 7.65 2.95 −1.03 5.15 −3.16 −8.21 2.62

y  (mm) 1.58 −0.05 −3.78 7.6 3.93 4.36 3.31 0.2 7.47 6.31

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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by the standard deviation of all remaining voxel values outside the ROI in all images with equal sample s and 
location p . The SNR of image i is then simply given by the quotient as,p,i/ns,p of signal and noise. Similar to the 
SNR the sample size is estimated by evaluation of the projected images cs,p,i . It is given by the number of voxels 
vs,p,i  inside the ROI with voxel values above half of the image signal as,p ,i.

Figure 2. Distribution of the 21 positions listed in table 1 within the FoV (thick rectangle). The size of the markers matches the size 
of the samples up to a global scaling of the figure.

Figure 3. Multi-channel reconstruction Mavg = 10 000 of sample S (top row), sample M (middle row), and sample L (bottom row) 
located at the center (position 0) of the field of view. The signal strength and distribution throughout the channels cS (left column), 
cM (middle column), and cL (right column) is characteristic for each sample and changes very little with the sample location.

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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4. Results

4.1. Magnetic particle spectroscopy
MPS measurements are here used to predict the MPI performance of each sample. The tracer response dm/dt 
plotted against the applied field defines the point spread function (PSF). The height of the PSF indicates the signal 
intensity of the raw MPI signal, and the full width at half maximum (FWHM) determines the potential image 
resolution, at least for 1D MPI sequences along the direction of excitation (Croft et al 2016). As can be seen from 
figure 5, the small sample (S) indicates the worst performance, both in terms of signal intensity and resolution, 
while samples M and L are comparable in terms of indicated performance. We therefore expect a lower signal-
to-noise ratio (SNR) from images generated from sample S than from samples M and L. The FWHM decreases 
with increasing core size, with values of 9.34 mT µ−1

0 , 6.57 mT µ−1
0  and 6.49 mT µ−1

0  for respective samples S, M 
and L. Hysteresis loops (m(H)), generated by integrating the time-domain MPS data, also show the differences in 
magnetization response among the three samples: the larger particles exhibit an increased phase lag with respect 
to the excitation field, indicated by the increasing width of the hysteresis loop with size.

4.2. Multi-channel image reconstruction
Observations on a random subset of all reconstructed images show that the multi-channel reconstructions 
shown in figure 3 are qualitatively representative for most reconstructions. We find a strong signal contribution 
at the sample location in at least one of the channels of the multi-channel image. Only in some cases does image 
noise create ‘hot’ pixels, which are brighter than the sample signal. In the reconstructions of the sample with 
small sized cores (S) we find the bulk of the signal in the channel cS and the remaining signal within channel cM. 
As the block averaging length decreases we observe a signal shift from channel cS to cM. Signal within cL does 
occur rarely and therefore seems to be coincidental noise. As for the the sample with medium sized cores (M), we 
find almost all to all of the signal in channel cM. Signal within the other channels does occur rarely and is mostly 
caused by noise. The remaining sample L does behave similarly in that most of the signal is observed in channel 
cL. Reconstructions where the above mentioned does not apply occur at positions 5, 6, 14 and 19, which are 
located close to the corners of the FoV. Here, signal leakage into channel cM is visible for samples S and L and an 
overall drop of the signal intensity can be observed for all samples.

Reconstruction results for the multi-sample phantom are shown in figure 6. The arrangement of the samples 
for each measurement is shown in the first column of the figure. Sample L is placed in the upper position, sample 
M is placed in the lower position, and sample S is placed in the left position (see figure 1(c)). The reconstructed 
channels cS, cM and cL are shown in columns two to four. For all combinations one can see that the samples can be 
spatially resolved and the core size can be separated, with some small signal leakage from the S sample into the M 
channel which was also observed for the single-sample measurements.

4.3. Core size discrimination
Core size discrimination by classification of the signal weight vectors is possible. The results of the classification 
are summarized in table 2, which shows the confusion matrices for each block averaging length. Each row of the 
matrix represents the predicted sample core size while each column represents the true core size. Hence, correct 
predictions can be found on the diagonal of the matrix and misclassifications can be found off the diagonal. 
Depending on the block averaging lengths Mavg  of 10 000, 1000 and 100 the core size is predicted successfully 
in 96.7%, 92.1% and 88.9% of the cases, respectively. Analyzing the spatial distribution of the misclassified 
observations, we find a strong accumulation at positions 5, 6, 14 and 19 in the corners of the FoV as shown in 

Figure 4. Multi-channel reconstruction Mavg = 10 000 of sample at position 17. The ROI is delineated by the white line. 
Summation of the ROI for each channel yields the weights vector w = (0.72, 0.11, 0.02).

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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Figure 5. MPI performance of each sample is indicated by the rate of change of the magnetization under an applied AC field. The 
point spread function (left) of sample S shows decreased peak height and broader FWHM compared to samples M and L. Data 
points were interpolated and then integrated to produce the m(H) hysteresis loop (right).

Figure 6. Multi-channel reconstruction with Mavg = 10 000 of the multi-sample datasets with all three (top row) or different 
combinations of two (second to fourth row) samples in the field of view. The location of the samples is indicated in the first column. 
For each combination the three channels cS, cM, and cL are shown in the second to fourth columns.

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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figure 7. Restricting our predictions to all positions excluding the aforementioned, one observes a significant 

improvement of the prediction rates to 100%, 98.3% and 97.5%.

4.4. Signal to noise ratio and sample size estimation
The SNR mainly depends on the sample used and the block averaging length. For Mavg = 10 000 we found 
median SNR values of 40, 260 and 150 for the samples S, M and L, respectively. Similarly, we observed SNR values 
of 30, 100 and 160 and 20, 60 and 90 for Mavg = 1000 and Mavg = 100, respectively.

The estimated sample size too depends on the sample used and the block averaging length. Here, we esti-
mated sample sizes of 8, 3 and 4 voxels for Mavg = 10 000 and samples S, M and L, respectively. Similarly, we 
observed sample sizes of 12, 5 and 6 voxels and 10, 6 and 6 voxels for Mavg = 1000 and Mavg = 100, respectively.

5. Discussion

By adapting the multi-channel image reconstruction procedure developed in Möddel et al (2018), we have 
demonstrated simultaneous spatial mapping and nanoparticle size discrimination. To optimize signal-to-noise 
and resolution, we used highly monodisperse magnetite nanoparticles with core sizes in the range 21.9 nm–
27.7 nm. We were consequently able to distinguish between particles that differ in core diameter by as little as 
2.5 nm. The two main factors influencing the core size prediction rates were the block averaging length and the 
spatial position of the sample within the FoV. Raising the block averaging length, which directly relates to the 
SNR of the MPI measurement, increased the visual quality of the multi-channel images as well as the core size 
prediction rates. However, more influential was the the sample location. For samples located close to the corners 
of the drive-field FoV prediction rates dropped down to 33%–66%, which is a direct consequence of the increased 
signal leakage and reduced signal intensity in the corresponding multi-channel images. We hypothesize that the 
local excitation trajectory at these positions is the underlying cause for these anomalies as it lacks a strong field 
reversal like e.g. the excitation trajectory at the central position. For the remaining positions we find predicted 
rates of above 97.5%, indicating the high sensitivity of our technique.

Limitations naturally arise from the polydispersity of the nanoparticle core sizes. There will be significant 
overlap in core size among samples, even with low size distribution parameters (<0.1), as seen in figure 8. As a 
result, there will be some unavoidable signal leakage into other channels, as we have observed. Improving mono-
dispersity, either during the synthesis process or with an additional filtering step, is a key component to improv-
ing prediction accuracy.

Table 2. A confusion matrix for each averaging block length Mavg  shows the number of correct assignments in the diagonal of each matrix. 
The number of false assignments is listed in the off-diagonal elements.

True core size

Mavg = 10 000 Mavg = 1000 Mavg = 100

S M L S M L S M L

Class label S 20 0 2 200 12 38 1950 247 400

M 0 20 0 0 188 0 43 1753 0

L 0 0 18 0 0 162 7 0 1600

Figure 7. The relative number of misclassifications is shown for all averaging block lengths Mavg  in dependence on the position of 
the sample. One observes that most misclassifications occur with the sample close to the corner of the FoV. Moreover, one finds an 
increase of the relative number of misclassifications with decreasing block averaging length.

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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We found that the height and FWHM of the PSF extracted from MPS for each nanoparticle sample was able to 
correctly qualitatively predict their imaging performance. While the height and FWHM of the  zero-dimensional 
MPS peak are known to predict 1D MPI SNR and resolution along the scanning direction, it was unclear if those 
results could be generalized to 2D excitation sequences. The SNR of sample S in the 2D images is worse than that 
of samples M and L by at least a factor of 3, while the SNR of samples M and L are comparable, differing by 60% 
or less. This is consistent with our predictions from MPS, where we found that the peak of the PSF generated from 
sample S was significantly lower than those of samples M and L, which are about the same height. Similarly, the 
FWHM from the PSF of sample S was 42%–44% greater than those of the samples M and L, which is consistent 
with our results that the estimated sample size of sample S is approximately double those of M and L. The FWHM 
of samples M and L differed by less than 2%, which is reflected by the fact that the estimated sample size of sam-
ples M and L is approximately the same in the 2D scans.

During an MPI scan, all particles outside the dynamic region are magnetically saturated. As the field-free 
point is scanned over the sample, the particles’ magnetic moment will rotate in a manner that can be char-
acterized in part by the effective relaxation timescale. The equilibrium relaxation time, whether Brownian 
(τB = 3ηVh/kBT , with viscosity η, hydrodynamic volume Vh, Boltzmann’s constant kB, and temperature T), or 
Néel (τN = τ0 exp[KVc/kBT], with attempt time τ0, anisotropy K, and core volume Vc) increases with particle 
size. Relaxation times for each sample are show in table 3. While in reality, the rotation mechanism and effective 
relaxation time will be dependent on field conditions, we can nevertheless see that the relaxation dynamics are 
highly sensitive to particle size. In general, larger particles will have a longer relaxation time, and will therefore 
take longer to begin magnetic reversal. This effect can be seen in figure 5, where the integrated m(H) loop widens 
with increasing core size. Due to these differences in the reversal dynamics, differences will arise in the frequency 
spectra, as measured in each sample system matrix, which can then be used to separate and characterize signals 

from different samples as we have demonstrated.
The signal generated by the particle response can be separated into an adiabatic part, proportional to the 

derivative of the Langevin function, and a relaxation term (Croft et al 2016). The adiabatic term will be depend-
ent on core volume, while the relaxation term will typically be dependent on both core and hydrodynamic size, as 
shown above. The relative contribution of these two terms has not been theoretically determined, so it is impos-
sible to identify which component contributes most to the signal differences that we observe here.

We do hypothesize that all three samples undergo primarily Néel rotation, after a possible initial Brownian 
alignment, which is consistent with the fact that the Néel relaxation time is shorter than the Brownian relaxation 
time for all samples. Following (Shah et al 2015), if we assume cubic anisotropy rather than uniaxial anisotropy 

Figure 8. Fits to TEM images indicating the core size distribution of each sample. Fits were performed assuming a log-normal 
distribution of particle diameters.

Table 3. Calculated equilibrium relaxation times for each sample.

Brownian relaxation time (s) Néel relaxation time (s)

Core size S 2.83 × 10−4 1.83 × 10−7

M 1.55 × 10−4 6.68 × 10−6

L 2.98 × 10−4 1.63 × 10−4

Phys. Med. Biol. 64 (2019) 074001 (11pp)
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for spherical magnetite particles, MNPs first undergo a Brownian alignment to align their nearest easy axis to 
the field, but then rotate primarily via the Néel mechanism. This interpretation is consistent with results show-
ing that immobilization of particles does not result in a major decrease in signal (Shah et al 2015). Under the 
MPI saturation field, then, all particles large enough to experience Brownian rotation would have aligned easy 
axes with the field. Larger particles will then have an increased energy barrier KVc to cross in order to flip their 
magnetization, which would result in a larger phase lag. This would explain the size-dependent magnetization 
behavior seen in figure 5. Unfortunately, without samples that all have the same hydrodynamic size (due to the 
practical difficulties inherent in the coating process), we cannot be confident that this interpretation is correct. 
However, regardless of which mechanism dominates, it is evident that particle core size has a significant effect on 
the resulting dynamics.

In this work, we have imaged multiple samples within the same field of view, which is the precursor to multi-
contrast in vivo experiments with separately functionalized particles. Recently, mixtures of samples were studied 
with MPS Viereck et al (2019), based on spectral discrimination of core and hydrodynamic size. Quantification 
of nanoparticle mixtures in MPI is significantly more complex than in MPS, and so it is unclear how well the 
method would work in practice. However, their work indicates that quantifying mixtures of samples may be pos-
sible in MPI as well, and would be an interesting future direction for an extension of this work.

6. Conclusion

In this work, we have demonstrated simultaneous spatial mapping and nanoparticle core size discrimination 
in 2D MPI. This is the first study indicating that optimized MNP tracers, separated by only a few nanometers 
in core diameter, can be spectrally distinguished. These results could enable a range of new medical imaging 
applications, wherein optimized MNP cores would be functionalized separately for different purposes, including 
cancer targeting, circulation in the blood, or coating of devices such as catheters and guide-wires. These separately 
functionalized particles could then be distinguished in high resolution multi-channel images using this multi-
contrast imaging technique.
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